
Improving foreign-key locking

Álvaro Herrera

May 18, 2012

1 Historical and current state of affairs

The foreign key implementation has always been a bit problematic from a per-
formance point of view. Underneath, it uses tuple (row) locks to ensure that
referenced rows are still in existance at the end of the transaction. Prior to 8.1,
it used SELECT FOR UPDATE on those tuples, which was really slow and
deadlock-prone. This led to many people removing the foreign key declarations
from their database schemas, to improve performance.

In 8.1 we introduced MultiXactIds and SELECT FOR SHARE; this im-
proved concurrency considerably, and many users were very happy. Let’s see
how this works.

2 A quick tour on tuple locks

Locking tuples is not as easy as locking tables or other objects. The problem
is that there might be many more tuples being locked at any one time, so it’s
not possible to keep the lock objects in shared memory. To work around this
limitation, we use a two-level mechanism: the lock information is kept on the
physical tuple itself. Whenever an unlocked tuple is to be locked, we set a “row
mark” on the on-disk storage area of the tuple. This row mark is, in principle,
the Transaction ID (Xid) of the transaction that owns the tuple lock, and is
valid only as long as that transaction is in progress. When the transaction is
gone, the tuple mark is no longer considered held and some other transaction
can acquire it.

So, if a transaction determines that the tuple already has a row mark set
(that is, there is another transaction holding the tuple lock), it acquires the
tuple’s heavyweight lock and then attempts to take a lock on the transaction
that owns the row mark. That way, as soon as the lock holder transaction
finishes, the lock waiter is awaken and can proceed with obtaining the row
mark. Now, if the heavyweight lock on the tuple is also taken, it means that the
tuple is locked and there is some other transaction waiting to acquire the row
mark, so we also sleep then; we will be awakened when the waiting transaction
releases the tuple’s heavyweight lock, most likely only to continue sleeping until
that transaction also releases the row mark when it finishes.

1



When a tuple is locked by more than one transaction (in share mode, obvi-
ously) there isn’t enough space in the tuple header to store the Xid of each and
every locking transaction. Instead, we store a number of the same width as an
Xid, and set a flag on the row header that this number is not a simple Xid. We
call this number a MultiXactId. Elsewhere (pg multixact), the system stores
a list of Xids that each MultiXactId is associated with — its members.

When a tuple is locked by multiple transactions, with MultiXactIds as cur-
rently implemented, there is no practical difference from what’s described above.
The row mark has an infomask bit (more on that below) that indicates that the
locker is actually a MultiXactId; a transaction that needs to wait until the locker
is gone has to grab the list of members of the MultiXactId, and then sleep on
them one by one. However, if the lock mode it wants to acquire doesn’t conflict
with the existing locks (a situation that can only arise when the locks held are
FOR SHARE and the new transaction also wants a FOR SHARE lock), then it
grabs the list of members, adds itself to it, and create a new MultiXactId with
the list so created, then marks the row with it1.

2.1 Infomask bits

So where is this “row mark” thing stored? Each tuple has a small area that
is used to store flag bits about tuple state. Row marks involve four of these
bits: HEAP XMAX INVALID, HEAP XMAX EXCL LOCK, HEAP XMAX SHARE LOCK, and
HEAP XMAX IS MULTI.

In the current code, there are five interesting states to distinguish:

1. Tuple is not deleted, updated or locked

2. Tuple is updated or deleted

3. Tuple is locked in exclusive mode

4. Tuple is locked in shared mode by a single transaction

5. Tuple is locked in shared mode by multiple transactions

State INVALID EXCL LOCK SHARE LOCK IS MULTI

untouched X
deleted or updated (no bits set)
exclusive locked X
share-locked by one X
share-locked by
many

X X

The Xid of the locking transaction (or the MultiXactId, if that’s the case)
is stored in the Xmax field of the row header.

1It follows that a transaction that sleeps on multis have to recheck the multi after they
wake up, just in case someone added itself to the list in the meantime.

2



A great virtue of this scheme is the simplicity: the interested transac-
tion needs only to check whether one of the HEAP XMAX EXCL LOCK or
HEAP XMAX SHARE LOCK bits is set to determine whether the tuple is up-
dated or just locked, which is crucial for visibility testing.

3 Implementing improvements

However, concurrency problems with foreign keys remain, and some users still
remove them. These performance problems were known and understood and
suffered by many. Deadlocks, however, weren’t so commonly reported. How-
ever, they still showed up in some situations; they are, of course, much worse
than concurrency loss because they cause transactions to abort that have to be
retried.

Joel Jacobson from Glue Finance reported one such problem along with
many details. His report was thoroughly analyzed and discussed on the pgsql-
hackers list, during which discussion Simon Riggs came up with a proposal to
rework the locking level that foreign keys acquire; this was supposed to fix the
problem for good.

Command Prompt accepted the challenge to implement such a thing. We
proposed a first patch2, which was of reasonably limited scope. This patch
wasn’t modifying MultiXactIds at all, but instead it introduced a new locking
mode for tuples (which was dubbed KEY LOCK), using a separate infomask
bit, and changed the behavior of UPDATE when it detected such a lock on the
tuple to be updated.

Noah Misch reviewed the patch in minute detail, and his most important
conclusion was that while our patch did fix some of the deadlock scenarios, it
didn’t fully solve the deadlock problem – in particular, it didn’t fix the problem
reported by Joel. He pointed out that while the patch allowed an update to
proceed on a tuple that was locked, it did not allow a lock to proceed on a tuple
that was updated, which in hindsight was just plain weird.

Noah came up with the idea of differentiating lock modes at the MultiXact
level. This would cause the lock conflict table to make more sense, and while at
it, it would allow locks not to conflict with updates on tuples. We studied this
idea and decided to implement it.

4 What the new multixactids look like

In order to support a more sophisticated lock conflict table, we need to extend
MultiXactIds to store the lock type that each member transaction holds. That
way, a future locker can inspect the list of members and determine whether it
conflicts or not.

There are six interesting locking states to differentiate:

2http://archives.postgresql.org/message-id/1294953201-sup-2099@alvh.no-ip.org

3



• FOR KEY SHARE, used by foreign keys

• FOR SHARE, a legacy mode implementing normal share-lock behavior

• FOR UPDATE, an SQL-conformant lock mode

• FOR KEY UPDATE, stronger than FOR UPDATE

• UPDATE, acquired by updates that do not change the values of the
columns of the tuple’s key

• KEY UPDATE, acquired by updates that do change the values of key
columns, and also by row deletion.

The conflict table is:

FKS KS FU FKU U KU

FOR KEY SHARE X X
FOR SHARE X X X X
FOR UPDATE X X X X X
FOR KEY UPDATE X X X X X X
UPDATE X X X X X
KEY UPDATE X X X X X X

Note that as far as the conflict table goes, FOR UPDATE and UPDATE
behave identically, as do FOR KEY UPDATE and KEY UPDATE. The dif-
ference between the two modes in each pair is that the FOR variant is only a
lock, whereas the other one is known to have updated the tuple (in other words,
there is a newer version of the tuple elsewhere). We need to distinguish those
two cases for performance reasons that will become clear later on.

4.1 The updating protocol

When you want to update a tuple:

• if the tuple is untouched, update normally

• if the tuple is locked and your lock doesn’t conflict, grab the lockers list,
add yourself to it, and set it as the lockers of the old version of the tuple.
The new tuple must be marked with the old lockers list. If you notice that
the lockers list is empty, proceed as above.

• if the tuple is locked and your lock conflicts, grab the lockers list and sleep
on it. When you are awaken, proceed as above.

• if the tuple is updated, sleep normally until the updating transaction fin-
ishes, then

– if if commits, fail normally (serializable) or grab updated version and
restart (read committed)

4



– if it aborts, continue as above.

Note the main thing of interest here is to be able to quickly figure out if a
tuple is locked or not, what’s the strongest lock held, and whether there is an
update or not.

4.2 The locking protocol

When you want to lock a tuple:

• if the tuple is untouched, just grab the lock.

• if the tuple is locked, and your lock doesn’t conflict, grab the lockers list,
add yourself to it, and set it as new locker.

• if the tuple is locked and your lock conflicts, grab the lockers list and sleep
on it. When you are awaken, proceed as above.

• if the tuple is updated and your lock doesn’t conflict, grab the lockers list,
add yourself to it, set as new locker, then follow the update chain and
lock the updated versions too.

• if the table is updated and your lock conflicts, grab the lockers list and
sleep on it. When you are awaken, proceed as above.

Here we’re also interested in the maximum locking strength, and whether
there is an update or not. Note that part of the “locking strength” thing that
we need to figure out is whether the tuple’s key has been modified in an update:
because if it hasn’t, then a FOR KEY SHARE lock doesn’t conflict and doesn’t
have to sleep; but if it has then it has to wait until the update is done.

4.3 The new infomask bit definition

In order to support all of this, and having it perform decently, some additions
and changes to infomask bits were made. We added HEAP XMAX KEYSHR LOCK
to have a fast path to figure out conflicts in the very common case of for-
eign key checking. We also added HEAP UPDATE KEY REVOKED which
is set whenever an update (and a delete) “revoke” the key of a tuple, that
is, whether it either changes it or deletes the tuple completely. Finally, we
changed HEAP XMAX SHARE LOCK to HEAP XMAX LOCK ONLY; this
is set whenever there is a lock on the tuple but it hasn’t been updated.

Note that a FOR SHARE lock no longer has a way to distinguish itself from
other locks using only the infomask bits, so we force those locks to always use
MultiXactIds. This is a bit of a performance regression, but since we expect
FOR SHARE locks to be seldom used, we don’t feel this is a serious problem.

1. Tuple is not deleted, updated or locked

2. Tuple is deleted, or updated with key columns changed (the key is revoked)

5



3. Tuple is updated, but no key columns are changed

4. Tuple is locked in key-exclusive mode

5. Tuple is locked in exclusive mode

6. Tuple is locked in shared mode

7. Tuple is locked in key-shared mode

State INVALID EXCL LOCK KEYSHR LOCK LOCK ONLY KEY REVOKED IS MULTI

untouched X
deleted or updated X maybe
key-exclusive
locked

X X X maybe

exclusive locked X X maybe
share-locked X X
key-share-locked X X maybe

Note that there are several cases where MultiXactIds can be involved here
where they weren’t previously. In particular, we can have them on updates or
deletes. This is necessary so that a transaction can lock a tuple when it’s being
updated by another one. However this is also useful for other reasons: consider
a transaction that locks a tuple, then a subtransaction deletes it and aborts.
The current code just “forgets” the lock, and so after the subtransaction abort
the tuple is no longer locked. This is considered acceptable in the current code,
though the documentation contains a warning about it, and it is certainly a
violation of the so-called “principle of least surprise”. Fixing this problem is a
nice side-effect of this patch.

5 Implementation notes

5.1 WAL

A new WAL message had to be added, so that whenever an updated tuple is
locked, the updated copy is also locked. Also, the existing UPDATE, DELETE
and LOCK TUPLE records had to be expanded to include the possibility of a
MultiXactId being involved, and what the new infomask bits are.

5.2 Visibility rules (tqual.c)

Visibility rules are the ones that take a tuple header and a snapshot, and deter-
mine whether the tuple is visible to that snapshot. They are really tricky to get
right: they have to consider the multiple different cases of infomask bits being
set or not, the values of the Xmin and Xmax fields, and data from other parts
of the system such as pg clog and pg multixact lookups.

The bits that we’re interested in changing for this patch are basically whether
a tuple is visible or not depending on updated/locked conditions. Previously,

6



figuring this out was pretty easy: if the “locked” bits were set, then it was not
an update; and if it was locked, then it was visible. If it’s an update, then we
grab the Xmax value and test it in pg clog for visibility.

In the new code, a tuple might be locked and updated at the same time, so
the appropriate bit to check now is HEAP XMAX LOCK ONLY. But the real
complexity is that when HEAP XMAX IS MULTI is set, and LOCK ONLY is
not set, we need to resolve the MultiXactId to its member transactions and scan
them to find what’s the Xid of the update transaction – the “effective Xmax”,
so to speak. That Xmax is the value we need to test in pg clog. This means
that visibility testing, which previously only needed to access the infomask bits
and occasionally pg clog, might now also need to access pg multixact.

5.3 pg upgrade

Changes in MultiXactId on-disk storage mean that pg upgrade support is needed.
There are two parts to this. The thing to keep in mind is that pg upgrade cur-
rently does not copy pg multixact data files, which is okay for the current code,
because the data is not useful after a database restart. However, with the
patched code, they are necessary because some of the MultiXactIds in there
might contain updates and so are essential for visibility testing.

The first issue is upgrading from a version that doesn’t have this patch to
a version that has; this needs some way to “protect” tuples that are marked as
locked in the old code, so that when the visibility code tests them, the result is
the same as if it was running in the old version. The solution to this problem
is to have pg upgrade set an “epoch” variable in the MultiXact subsystem to
the latest MultiXactId value assigned in the old install, so that any value tested
prior to that (which by definition is only going to come from the old installation)
is reported as “only locked”, which is consistent with the fact that FOR SHARE
locking is all that the old installation had.

The second problem is upgrading for a version that has the patch, to a newer
version that also has it. This one is simple – just copy the pg multixact files
from the old cluster into the new, just like pg upgrade already handles pg clog
files.

5.4 EvalPlanQual

EvalPlanQual (EPQ) is a complex mechanism used mainly by the READ COM-
MITTED rules to obtain and verify qualifications for tuples that have been up-
dated (it’s also used for things like triggers and others, but I’m going to ignore
these).

The relationship that EPQ has to the patch at had, is that it also walks an
update chain to do something about it – exactly what our lock-updated-tuple
code does. Since EPQ walks the chain and ends with locking the final version,
and lock-updated-tuple also walks the chain locking each version, what we end
up with is that concurrent updates to the same tuples might end up dying with
deadlocks.

7



The way we ended up working around this problem, was to shut down EPQ
from recursing into the updated tuple in certain conditions. We’re not really
certain that this fix is correct, or whether there are ways to make it fail.

8


